Chapter 1	
p.27	In the last line of the paragraph after Equation $(1.18b)$, the last phrase should be: one ohm ^{-1} is
	defined as one Siemen (S).
Chapter 2	
p.55	In the table at the bottom of the page, the values of log γ , γ , and Activity for Ca ²⁺ should be
	$-0.089, 0.814, \text{ and } 8.14 \times 10^{-5}$, respectively. The corrected table appears below:
	IonSize Parameter a $\log \gamma$ γ Activity
	Na ⁺ 4 -0.0230 0.948 1.90×10^{-3}
	CI ⁻ 3 -0.0230 0.948 1.14×10^{-3}
	Ca ²⁺ 6 -0.089 0.814 8.14×10^{-5}
	HCO_3^- 4 -0.0230 0.948 9.48 × 10 +
Chapter 3	
p.81	In the second line of the paragraph above Equation (3.1), delete the word "negative." Sentence
	should read:
	Figure 3.1 includes three curves — one for the enthalpy (H) of the molecules, one for the
	product of the system temperature and the entropy (S) of the molecules, and one for their
	Gibbs energy (G).
p.8 2	In Figure 3.1, the two E^* terms are reversed. The term on the far left should be $E^*_{A+B\to P}$ and the term on the right should be E^* .
	term on the right should be $L^*_{P \to A+E}$. The corrected right appears below.
	Molecules above this energy level are activated complexes, AB^* (or, for the reverse reaction, P*) $F^*_{A+B \rightarrow P}$ H AH_r AG_r $T\Delta S_r$ Reactants Transform Of Freedom Of Teaction (reaction coordinate)
Duchlama	In Ducklam 12, the note constant in line 9 has incoment write. The supression should be
Problems	In Problem 12, the rate constant in line 8 has incorrect units. The expression should be: 10^{-32} 10^{-32} 10^{-1} -1 10^{-32} 10^{-32} -1 10^{-1}
p.120	$k = 10^{-5.2} \text{ atm}^{-1} \cdot \text{s}^{-1}$, not $k = 10^{-5.2} \text{ atm}^{-1} \cdot \text{d}^{-1}$
p.128	The revised version of Problem 19 is available on the book's webpage at waveland.com.

Chapter 7																		
p.366	The equations at	the top of p.3	666 are incorre	ect. Replace t	hat material w	ith the follow	ving content:											
	$[HAc]_{added} = [Ac]$	etate – 1] _{eq} –	-[Acetate – 1]	_{in,init} = 1.1934	$4 \times 10^{-3} - 1.0$	$\times 10^{-4}$												
				=1.0934	4×10^{-3}													
	[HAc]	$ = [\mathbf{H}^+]_{eq} - $	$[\mathbf{H}^+]_{\text{in init}} = 1$	$.0934 \times 10^{-3}$	-0 = 1.0934	× 10 ⁻³												
		edcq																
	In Figure 7.6 the numerical values	table values a in the paragr	and the caption aph below the	n are incorrect figure. Corr	ct, as well as the the sected material	he equations appears belo	and w:											
	(a)																	
				No. of iterations	1		following content: following content: tions and s below: Log activity 4.828 4.000 4.071 9.997 plated % precipitated 0.000 0.000 n adjusted to pH omposition; balance, this time 05											
	pH	4.000	Sum o	f cations (eq/kg)	1.0117E-04													
	Ionic strength	1.00e-04	Sum o	f anions (eq/kg)	1.5041E-05													
			Charg	ge difference (%)	74.114346													
Concentrations and activities of aqueous inorganic species (mol / I) Print to Excel																		
		Concentration Activity Log activity cetate-1 1.5041E-05 1.4867E-05 -4.828																
	Acetate-1 1.5041E-05 1.4867E-05 -4.828																	
	H+1		1.0117E-04		1.0000E-04	-4	-4.828 -4.000 -4.071											
	H-Acetate (aq) 8.4959E-05 8.4961E-05 -4.071																	
	OH- 1.0187E-10 1.0069E-10 -9.997																	
	(D) Distribution of components between dissolved, sorbed and precipitated phases																	
	(Concentratio	ons in molal)	,															
	Component	Total dissolved	% dissolved	Total sorbed	% sorbed	Total precipitated	% precipitated											
Acetate-1 1.0000E-04 100.000 0 0.000 0 0.0 H+1 1.8613E-04 100.000 0 0.000 0 0.0 Figure 7.6 Output screeps for a system containing 10^{-4} M HAc which is then adjusted to																		
											4 0 by addition of strong acid (a) Overall summary of solution composition:							
	(b) Equilibrated mass distribution																	
	(b) Equilibrated mass distribution.																	
	Once again, we can compute the amount of reagent added by writing the mass balance, this time																	
	on H ':																	
	[HCl] _{added}	$= \left[\mathbf{H}^{+} \right]_{eq} - \left[\right.$	$\left[\mathbf{H}^{+}\right]_{\text{in,init}} = 1.8$	$61 \times 10^{-4} - 1$	$.00 \times 10^{-4} = 8.00$	$.61 \times 10^{-5}$												
	Of the 1.861 \times 10	$^{-4} M T O T \mathbf{H}$	in the equilibr	ium solution	1.012×10^{-4}	<i>M</i> is present	as free H^+											
	$(i \in H_2 \Omega^+)$ gene	rating an H ⁺	activity of 10	^{-4.0} The rest of	of the $TOTH$	8496×10^{-5}	M) is bound											
	with acetate in H	Ac molecules	a As expected	since the n	H of 4 0 is low	0.70×10 or than nK f	$r_{\rm H}$ is bound for HAc											
	(4.74) the proton	ated species	is present at a	larger activit	101 + 015 100	(1) (1)	of mated Λa^-											
	(4.74), the proton	aleu species	is present at a	larger activit	iy (0.490 × 10) man depro	nonaled AC											
	$(1.48 / \times 10^{\circ}).$																	

Chapter 8													
p.425	In Table 8.6, row (h), the value in the ALK column should be 3.01, not 2.51.												
p. 427	In Equation (8.21b), insert a coefficient "2" before α_2 .												
p.432	In the equation at the bottom of the page, the signs preceding the (H^+) and (OH^-) terms are												
	reversed. The equation should read: TOTTL = 2U(CO) = (UCO) = (UCO) = (UCO)												
	$TOTH = 2H_2CO) + (HCO_3) - (OH) + (H^2)$												
Chapter 9													
p.480	In the equation shown for part (b), the denominator $c_{L,i}$ in the first fraction should be $c_{L,i'}$ and the term in the denominator $(c_{L,i'})$ in the second fraction should be $(c_{L,i})$.												
Chapter 10													
p. 542	On the first page of Table 10.3, some of the entries in the top row showing stability constants for complexes of Ag^+ with EDTA, CN^- , and HS^- are in the wrong columns. The correct entries are as follows:												
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
	AgL 3.03 AgH_{1L} -0.78 AgL 13.02 AgHL 14.74 AgL ₂ 20.48 AgL ₂ 17.91												
	$AgL_3 \qquad 21.7 \qquad AgH_{-1}L \qquad 5.30$												
	$AgH_{-1}L_2 \qquad 8.59$												
	The same change should be made to the copy of this Table in the Appendix, p. 860. See Errata p. 5 for a corrected copy.												
p. 544	On the third page of Table 10.3, in the fifth column, showing stability constants for complexes of Hg^{2+} with NH_3 , the entry labeled HgL_3 should be moved down one line and changed to HgL_4 , and its associated value should be changed from 10.04 to 19.28. The same change should be made to the copy of this Table in the Appendix, p.862. See Errata p. 6 for a corrected copy.												
Chapter 11													
p.652 Problems	In Problem 22, line 5, change $Zn(OH)_2(s)$ to $Zn(OH)_2(am)$.												
Chapter 12													
p.682	In the expression for $\{Cu^+\}/\{Cu^{2+}\}\)$ near the bottom of the page, $10^{2.72}$ should be $10^{2.69}$, and $10^{-25.92}$ should be $10^{-25.95}$.												
	Two lines lower, in the expression for $\{Co^{2+}\}/\{Co^{3+}\}$, $10^{33.1}$ should be $10^{32.4}$, and $10^{2.46}$ should be $10^{3.76}$.												
p.686	The following sentence should be added to the answer to part (a) at the bottom of the page:												
	The half-reaction for oxidation of NH ₃ can be obtained by adding the " K_a " reaction for NH ₄ ⁺ /NH ₃ to the half-reaction shown in Table 12.3 for the NO ₃ ⁻ /NH ₄ ⁺ couple.												

Chapter 12 (continued)	
p.687	In part (ii) Cl_2/CN^- :
	In the first reaction shown, the product should be Cl^- , not $\frac{1}{2}Cl^-$
	$\frac{1}{2}Cl_2(aq) + e^- \leftrightarrow Cl^-$
	In the third reaction shown, insert a + sign between Cl^- and $\frac{1}{2} OCN^-$ on the product side
	$\frac{1}{2}Cl_2(g) + \frac{1}{2}CN^- + OH^- \leftrightarrow Cl^- + \frac{1}{2}OCN^- + \frac{1}{2}H_2O$
	In the last sentence before equation (12.22), omit the word "log" before variable K . The sentence should read
	By definition, e° equals K for the oxidation reaction, so we can write:
p.698–99	In line 4 of Example 12.10, $10^{45.61}$ should be $10^{35.4}$, $10^{52.63}$ should be $10^{43.6}$, and Fe(CN) ₆ ³⁻ should be Fe(CN) ₆ ⁴⁻ . (Note that the species Fe(CN) ₆ ³⁻ on the subsequent line is correct.) Correspondingly, the log <i>K</i> values for the reactions at the top of p.699 should be 35.4 for the second reaction, -43.6 for the third reaction, and 4.83 (instead of 6.01) for the overall reaction.
	Also, in the second reaction, the reactant Fe^{3+} should be Fe^{2+} .
	And, in the final paragraph of the solution, $10^{-6.01}$ should be $10^{-4.83}$, and >6.01 should be >4.83.
p.759 Problems	In Problem 9, line 1, change $S(s)$ to SO_3^{2-} .

Table 10.3, p. 542 and Appendix A.5, p 860

Tal	ole 10.3 Stat	ility consta ligand, H ⁺ ,	ants for and H ₂	some 1 O.	metal-li	gand co	mplexe	s. Valu	les corre	spond to	logβf	or forma	tion of th	ie compl	ex from	the free m	etal,
	CO_3^{2-}	SO	2-4	C	<u> </u>	Ч	1	Z	H_3	PO	€_4	ED'	ΓA	G	Ż	SH	
Ag ⁺		AgL	1.30	AgL	3.31	AgL	0.40	AgL	3.31			AgL	8.05	AgH_1	, -0.78	AgL	13.82
		AgL_2	5.25			AgL_2			7.21			AgHL	14.74	AgL_2	20.48	AgL_2	17.91
		AgL_3	5.20											AgL_3	21.70	AgH. ₁ L	5.30
																AgH _{-I} L	2 8.59
Al ³⁺		AIL	3.84	AIL	-0.39	AIL	7.01			AIHL	20.01	AIL	18.96				
		AIL_2	5.58			AIL_2	12.63			Al_2L	18.98	AIHL	21.78				
						AlL_3	16.70										
						AIL_4	19.40										
Ca ²⁺	CaL 3.2	2 CaL	2.36	CaL	0.40	CaL	1.14	CaL	0.20	CaL	6.46	CaL	12.44				
	CaHL 11.	13						CaL_2	-0.11	CaHL	15.04	CaHL	15.97				
										CaH_2L	20.92						
Cd ²⁺	CdL 4.3	7 CdL	2.37	CdL	1.98	CdL	1.20	CdL	2.55	CdHL	16.08	CdL	18.10	CdL	6.01	CdL	8.01
	CdL ₂ 7.2	3 CdL ₂	3.50	CdL_2	2.60			CdL_2	4.55			CdHL	21.43	CdL_2	11.12	CdL_2	15.31
	CdHL 11.3	33						CdL_3	5.89			CdH_2L	23.23	CdL_3	15.65	CdL_3	17.11
								CdL_4	6.80					CdL_4	17.92	CdL_4	19.31
Co^{2+}	CoL 4.2	8 CoL	2.30	CoL	-0.35	CoL	1.40	CoL	2.03	CoHL	15.43	CoL	18.16			CoL	5.20
	CoHL 12.	22						CoL_2	3.49			CoHL	21.59				

542

	,		38.42	2 31.93	23.22	5.49							15.27	16.57		2 - 1.43			
	HS		HgL_2	HgH_1L	HgH_2L	NiL							PbL_2	PbL_3		$ZnH_{-2}L$			
	- 1	17.00	32.75	36.31	38.97	30.20	36.03	40.74	43.34								11.07	16.05	19.62
	C	HgL	HgL_2	HgL ₃	HgL_4	NiL_4	NiHL ₄	NiH ₂ L ₄	NiH ₃ L ₄								ZnL_2	ZnL_3	ZnL_4
	ΓA	23.24	26.87	29.17		20.11	23.64	24.74				19.71	22.54	24.44	25.64	18.00	21.43	22.83	
0	ED	HgL	HgHL	HgH_2L		NiL	NiHL	NiH ₂ L				PbL	PbHL	PbH_2L	PbH ₃ L	ZnL	ZnHL	ZnH_2L_2	
m previous page	PO_4^{3-}			r		NiHL 15.33	NiH ₂ L 20.50					PbHL 15.48	PbH ₂ L 21.07			ZnHL 15.69			
continued fro	$\rm NH_3$		HgL ₂ 17.79		HgL ₄ 19.28	NiL 2.72	NiL ₂ 4.87	NiL ₃ 6.53	NiL ₄ 7.65	NiL ₅ 8.31	NiL ₆ 8.27					ZnL 2.21	ZnL ₂ 4.49	ZnL ₃ 6.85	ZnL ₄ 8.87
Table 10.3 –	F^{-}	HgL 1.60		-		NiL 1.30						PbL 2.15	PbL ₂ 3.24			ZnL 1.30			
	CI-	HgL 7.33	HgL ₂ 14.03	HgL ₃ 15.03	HgL ₄ 15.63	NiL -0.43	NiL ₂ -1.89					PbL 1.56	PbL ₂ 1.90	PbL ₃ 1.80	PbL ₄ 1.38	ZnL 0.46	ZnL ₂ 0.45	ZnL ₃ 0.50	ZnL ₄ 0.20
	SO_4^{2-}	HgL 2.47	HgL ₂ 3.48			NiL 2.30	NiL ₂ 0.82					PbL 2.69	PbL ₂ 3.47			ZnL 2.34	ZnL ₂ 3.28		
	CO_{3}^{2-}	HgL 12.13	HgL ₂ 15.58	HgHL 16.35		NiL 4.57	NiHL 12.42					PbL 6.53	PbL ₂ 9.94	PbHL 13.23		ZnL 4.76	ZnL ₂ 7.30	ZnHL 11.83	
		Hg^{2+}				Ni^{2+}						Pb^{2+}				Zn^{2+}			

544

Table 10.3, continued, p. 544 and Appendix A.5, p. 862